
www.manaraa.comDECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 63

IN HIS PAP ER entitled “Industrial Scale Agile,”9 Roly
Stimson characterizes industrial-scale agile as:

• “Agile at any scale.”
• “Agile as the rule, not the exception.”
• “Agile sustainably, forever,” not just as an

unrepeatable “one-off.”

This means being able to sustain-
ably apply agile strategies appropriate-
ly to anything and everything that can
benefit from them. This includes:

˲˲ Being able to do “agile at scale” as
and when appropriate.

˲˲ Doing small-scale agile as and
when possible/appropriate.

˲˲ Evolving the entire application
landscape and not just individual ap-
plications.

Although it is important, and a nec-
essary precursor to industrial-scale
agile, scaling agile is not the challenge
here. Rather, it’s about how to achieve
sustainability of the following:

˲˲ The way of working in the face of
ever-changing teams.

˲˲ The systems in the face of rapid
change.

˲˲ The application landscape as a
whole.

˲˲ Individuals and their careers, and
the development organization as a
whole.

˲˲ Long-term investment in IT.
There are many ways to illustrate

how fragile IT investments can be. You
just have to look at the way that, even
after huge investments in education
and coaching, many organizations
are struggling to broaden their agile
adoption to the whole of their organi-
zation—or at the way other organiza-
tions are struggling to maintain the
momentum of their agile adoptions as

Industrial-
Scale Agile—
From Craft to
Engineering

DOI:10.1145/3009830

 �Article development led by
queue.acm.org

Essence is instrumental in moving
software development toward
a true engineering discipline.

BY IVAR JACOBSON, IAN SPENCE, AND ED SEIDEWITZ

http://dx.doi.org/10.1145/3009830

www.manaraa.com64 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

Why is it important to move from
craft to engineering?

Doing so will help us cope with the
ever-increasing challenges of a more
automated, more interconnected
world—where small improvements in
software performance can make the
difference between profit and loss;
where a reputation for robustness,
scalability, and security can add mil-
lions to the share price; and where soft-
ware is more and more the public face
of the business.

The codified knowledge and profes-
sionalism of an engineering discipline
are necessary for:

˲˲ Sustaining and growing delivery
capability through changes in technol-
ogies, teams, and suppliers.

˲˲ Predictably scaling operations
from early prototypes to global rollouts.

˲˲ Taking control of investments and
knowing when to pivot to solutions
more likely to deliver favorable returns.

˲˲ Systematically growing the levels
of reuse and interoperability of solu-
tion components and systems.

˲˲ Producing long-lived solutions
with affordable costs of ownership.

Perhaps not everybody needs to move
from craft to engineering. As Mary Shaw
says, “The greatest need for engineering
discipline exists for software systems
that are fully automated and are oper-
ating unattended and where the con-
sequences of failure are catastrophic.
Examples are telecom equipment, nu-
clear safety devices, medical implants,
self-driving cars, and stock-trading
programs. The need for engineering in
software development depends upon
how serious the consequences are when
things go wrong and whether human
beings can take action in time to mini-
mize the consequences.” There is also
a strong need for engineering systems
used for e-commerce, finance, electron-
ic medical records, and even human re-
sources. The consequences of failures
in such systems may not include the im-
mediate loss of life, but they can still be
“catastrophic” to either the businesses
or the individuals affected.

Thus, for many organizations and
software systems craft is not enough.

The good news is there is a way for-
ward that maintains the values of agile
while making software development
more of an engineering discipline than
a craft. It involves:

their teams change and their systems
mature.

Another frequent example of unsus-
tainability is in the way many compa-
nies are facing an uncontrolled explo-
sion in the number of applications they
have to support and the overall cost of
ownership of IT as a whole.

So industrial-scale agile requires
much more than just being able to
scale agile. It also means taking a disci-
plined approach to ensuring IT invest-
ments result in sustainable benefits for
both the producing organization and
its customers.

This involves adopting a different
approach to many aspects of agility.
We need to look beyond small-scale ag-
ile, beyond independent competitive
islands of agile excellence, beyond
individual craftsmanship and heroic
teams, and beyond the short-term in-
stant gratification that seems to be the
focus of many well-intentioned but self-
centered agile teams. It is this adoption
of a more holistic approach that we call
moving from craft to engineering. (See
Jacobson3 for more background.)

From Craft to Engineering
The move toward agility has led to many
benefits for the software industry. It has
broken the tyranny of the prescriptive
waterfall approach to software engi-
neering, an approach that was causing
more and more large project failures,
and it has allowed software developers
to keep up with the ever-increasing de-
mand for more innovative IT solutions.

It has enabled many companies to
do great things but in many cases has
led to a culture of entitlement, heroic
programming, and short-term think-
ing that threatens the sustainability of
the parent companies and the IT solu-
tions on which they depend. Little or
no thought is put into maintainabil-
ity, the heroes become potential single
points of failure, and the cost of keep-
ing the lights on just keeps growing
and growing.

What is needed is a way to maintain
the values of agility while making soft-
ware development more an engineer-
ing discipline than a craft—a new form
of agile software engineering fit for the
Internet age.

What are craft and engineering?
The term craft is usually applied to peo-
ple occupied in small-scale production

of bespoke goods and trades where
skills are passed in person from master
to apprentice. Engineering, on the other
hand, is defined by Wikipedia as “the
application of mathematics, empiri-
cal evidence and scientific, economic,
social, and practical knowledge in or-
der to invent, innovate, design, build,
maintain, research, and improve struc-
tures, machines, tools, systems, com-
ponents, materials, and processes.”

There have been many discussions
about whether or not the term engi-
neering should be applied to software
development and whether or not soft-
ware engineers are actually engineers.
With the rise of cloud computing, big
data, and the Internet of Things, how-
ever, it is clear there are many types of
software and many aspects of software
development that would benefit from
an engineering approach.

In her 1990 seminal paper, “Pros-
pects for an Engineering Discipline of
Software,”7 Mary Shaw suggested a defi-
nition of software engineering would
include these clauses: “Creating cost-
effective solutions … to practical prob-
lems … by applying scientific knowledge
… building things … in the service of
mankind.” She also said about software
work that “most tasks are routine and
not innovative,” but it “is treated more
often as original than routine,” imply-
ing that there is a lot of potential for im-
proving quality and shortening time to
market “if we captured and organized
what we already know” by codifying our
knowledge, possibly even automating it.

Her observations are still highly rele-
vant; at the GoTo Amsterdam 2015 con-
ference on software development, she
talked about the progress made toward
establishing a software engineering dis-
cipline. According to Shaw, the charac-
teristics of engineering are as follows:

˲˲ Limited time, knowledge, and re-
sources force decisions on trade-offs.

˲˲ The best-codified knowledge, pref-
erentially science, shapes design deci-
sions.

˲˲ Reference materials make knowl-
edge and experience available.

˲˲ Analysis of design predicts proper-
ties of implementation.

Although software development
shares many of the characteristics of
an engineering discipline, we are not
there yet. The rise of agile is not a prob-
lem unless this is where we stop.

www.manaraa.comDECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 65

practice

Engineering of software. This
means the holistic engineering of all
software to improve the application
landscape as a whole, as well as the
individual point solutions. Practices
are needed that help teams engineer
their software for capturing require-
ments and for developing software
designed for engineering great prod-
ucts. It also means encouraging in-
novation in the large as well as the
small—innovation of new business
and new product opportunities as
well as innovation that addresses the
total cost of ownership impacting the
whole organization, rather than just
individual users and applications.

Engineering of methods. Methods
should be engineered to support the full
range of development challenges faced
today and in the future. The emerging
best practice should be captured and
codified in a way that makes it easy to
communicate and share among teams,
and enables each team to compose the
method they need from this growing
set of reusable, proven practices.

Furthermore, moving from craft to
engineering provides a robust platform
for encouraging, establishing, and sus-
taining true organizational agility.

Engineering of software. How would
software be developed if the craft were
already a real engineering discipline?
As in other engineering disciplines,
it would be engineered by using com-
monly accepted, consistent practices
that would be supported by models and
analysis based on a common ground of
foundational knowledge.

In the past, such an engineering
mindset has been misinterpreted as
meaning “big upfront design,” with
everything downstream of this being
akin to manufacturing rather than
engineering. Upfront blueprinting is,
indeed, often necessary for the engi-
neering of physical artifacts such as
buildings, bridges, and cars. This is
done so that proper analysis can be
carried out on the upfront models
and blueprints, because of the capi-
tal cost required to build those things
and the difficulty of changing them
once built. Software, however, is a
different kind of artifact—one that
does not require manufacturing in
the physical sense.

Agility in software development
takes advantage of this characteristic,

allowing software to be developed in
a rapid and incremental, but still re-
liable, way; however, there is a place
for disciplined design within an agile
development approach. It is just that,
with software, developers can also car-
ry out analysis and evolve designs in-
crementally, as they build the software
system itself.

What is needed is, in fact, a merger of
the agile mindset with the engineering
mind-set, combining incremental devel-
opment with the disciplined application
of foundational knowledge. In such an
approach, not everyone will necessarily
be an engineer, but developers will con-
tinue to be treated as skilled craftsmen,
not factory workers. (See the sidebar
“Craftsmanship and Engineering.”)

It is common in agile approaches to
talk of the emergence of the design of a
software system as that system is itera-
tively developed. This is the very em-
bodiment of evolutionary design as op-
posed to big upfront design. It can be
very effective in allowing a team to ex-
plore alternatives creatively, while still
converging on a good solution with a
clear overall design.

Such emergent design, however,
tends to produce point solutions for
specific teams. Serious software de-
velopment organizations, though, are
almost always dealing with multiple
teams working on multiple projects
within an overall enterprise-level appli-
cation landscape. Various project-level
solutions need to fit into this evolving
landscape. Indeed, the development of
a large software system often requires
multiple teams whose products are
components that must fit together to
create the overall system.

Dealing with design at this level is
the province of software architecture,
which, at both the system and enter-
prise levels, can and should still be
evolutionary. Rather than being en-
tirely emergent, however, key archi-
tectural decisions, presented in a de-
velopment roadmap, often need to be
made in advance of the corresponding
development work in order to provide
common guidance across projects and
teams. This is where engineering prac-
tices can be particularly important, al-
lowing for innovations that benefit the
organization as a whole, based on care-
ful analysis of business benefit versus
engineering cost.

Engineering of methods. Moving
from craft to engineering relies on
the codification and sharing of knowl-
edge. What is needed is for organiza-
tions to engineer their methods in order
to be more effective at engineering
their software.

Most methods in use today are at
the extremes, either monolithic or tac-
it. The agile space is experiencing the
rise of a number of competing, mono-
lithic scaled agile methods, such as
DAD (disciplined agile delivery), SAFe
(Scaled Agile Framework), LeSS (Large-
scale Scrum), and SPS (Scaled Profes-
sional Scrum). All these methods have
their special strengths and weakness-
es. They have their own camps of sup-
porters, but their monolithic nature
doesn’t make it practical to borrow
ideas from one another, even less to
borrow complete codified practices.
This situation is very similar to what we
had in the past with methods such as
RUP (Rational Unified Process), Open,
Structured Analysis and Design, and

Related to the idea of craft is craftsmanship, performed by a person who practices
or is highly skilled in a craft. Software development will always need craftsmanship
that can stand on more or less science, more or less engineering, and more or less
structured knowledge. We would, for example, describe an engineer as a craftsman using
engineering practices in developing software. The new software craftsmanship movement
is supportive of many engineering practices—for example, they are strong supporters
of design and architecture patterns, domain-driven design, among others. They take
pride in using the right tools, techniques, and design methods to achieve high-quality
software. They do not believe in heroics, but in quality of work and in tools. They believe in
sustainability, and in keeping the system “clean” and able to absorb change and rework.
The craftsmanship movement, however, doesn’t fully address the whole engineering
space and, in particular, how to systematically grow knowledge about the discipline.

Craftsmanship
and Engineering

www.manaraa.com66 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

so on. We have also observed that, at
many large organizations, the success
of tacitly applied agile practices has led
to a situation where the previously used
and codified (documented) methods
have been replaced by undocumented
agile folklore.

The paradox here is the discomfort
caused by not having a documented
method causes many organizations to
seek to replace their tacit agile meth-
ods with one of the new monolithic
methods. What they don’t realize is
that it will end up being rejected in
the same way as the original method
as teams seek to innovate and meet
the day-to-day challenges inherent
in their systems and circumstances.
This often leads to a constant churn
as method replaces method with little
or no rhyme or reason. The industry’s
habit of constantly switching between
no methods and the latest “one true
way” (an affliction that is sadly affect-
ing even the agile community) is not
the way forward.

Instead, organizations need an effec-
tive way of using what they learn from
effort to effort, applying and adapting
it to new projects. Moving blindly from
one fad method to another provides no
consistent basis for building common

Figure 1. Simple Essence-based health monitors.

Way-of-Working Opportunity

Stakeholders

Requirements

Software
System

Work

Team

A Simple Radar Chart

Figure 2. Four compatible governance life cycles defined using the Essence kernel.

Elaboration

Inception

Transition

Construction

$$

Opportunity Requirements System Team Work Way of Working

Solution Needed

Benefit Accrued

Identified

Bounded

Acceptable

Addressed

Demonstrable

Retired

Seeded

Collaborating

Adjourned

Initiated

Concluded

Prepared

Closed

Principles
Established

Retired

In Use

Operational

Stakeholders

Represented

Satisfied in Use

Recognized

Value
Established Conceived

Approach
Selected

Formed
Foundation
Established Started Involved

In Agreement

Fulfilled

Viable Coherent

Approach
Selected

Usable

Under
Control Performing

In Place

Working Well

Addressed Fulfilled Ready (Concluded) Working Well Performing
Satisfied for
Deployment

'

Feature Growth

Maintenance and
Small Enhancements

Support

www.manaraa.comDECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 67

practice

knowledge. Mandating a one-size-fits-
all process for all projects does not sup-
port the need for continual learning and
adaptation, however, and suppresses
craftsmanship and creativity.

The move from craft to engineering
requires first freeing the practices, pre-
senting them in an accessible, reusable
way that allows engineers confidently
and predictably to select the right engi-
neering practices for their context and
the problems they are trying to solve.

Essence: A Hope for a Better Future
Software development is a multidimen-
sional endeavor—where human ingenu-
ity meets human need meets collective
endeavor meets codified knowledge—
that would benefit from the judicious
application of engineering practices.
The path from craft to engineering
progresses—from ad hoc practice to
codified professional engineering
practices—through scientific learning.

The key to this transformation is the
ability to readily capture, share, and
improve the practices.

Essence is a simple intuitive lan-
guage and kernel of foundational el-
ements for the capture, description,
and assembly of practices and meth-
ods. Work on Essence has been going
on for more than 10 years—for the last
six years within the SEMAT (Software
Engineering Method and Theory) com-
munity—resulting in a new interna-
tional standard, adopted by OMG (Ob-
ject Management Group) in 2014.5 It
goes beyond just providing syntax and
notation for describing practices to es-
tablishing a solid common ground—a
kernel—that enables teams to:

˲˲ Describe their practices on top of a
universal, shared kernel.

˲˲ Easily share, adapt, and plug and
play with their practices to create the
innovative ways of working they need
to excel and continuously improve.

˲˲ Understand and visualize the prog-
ress and health of their endeavors, re-
gardless of their way of working.

Essence has several roles to play in
the move from craft to engineering: It is
helping to achieve the right balance in
software engineering endeavors; help-
ing to codify and capture engineering
practices; and acting as the basis for a
new kind of engineering community.

The use of Essence alone won’t
turn craftspeople into engineers, but

its adoption will help an organization
make this important transition and,
moreover, help the industry prepare
for the future.

Balancing progress and health. Es-
sence provides a kernel of elements
that establishes a common ground for
carrying out software engineering en-
deavors. This can be used in a number
of ways to increase the effectiveness of
software engineering teams.

Actively monitoring the health of an
endeavor. The kernel defines seven
aspects of concern for any software
engineering endeavor: opportunity,
stakeholders, requirements, team,
work, way of working, and the soft-
ware system itself. For each of these
elements Essence defines a series
of states, with checklists, represent-
ing healthy progress. As shown in
Figure 1, these can be used to create
practice-independent health moni-
tors that can be used to check that
the endeavor is on course and pro-
ceeding in a healthy manner. On the
top, the radar chart (an interactive,
online version complete with check-
lists is available1) represents progress
as growth from the center; and on the
bottom, on the milestone map (avail-
able from the App Store as the Alpha
State Explorer app by Ivar Jacobson
International), all the states are laid

out in order from top to bottom,
with achieved states shown filled
in. The second example also shows
the checklist used to confirm the
achievement of the Software System
Demonstrable state.

The kernel can also be used to create
lightweight governance and compli-
ance practices to help ensure the team
achieves the required level of engineer-
ing rigor. By basing the governance
and compliance on the kernel itself,
this can be achieved in a practice-inde-
pendent fashion allowing the teams to
safely innovate and own their own ways
of working. Figure 2 shows the four dif-
ferent governance life cycles that were
at the heart of Munich Re Essentials,
the modern practice-based software
development method created by Mu-
nich Reinsurance.4 The four life cycles
are Exploratory, Feature Growth, Main-
tenance, and Support, and the check-
points (milestones) of each life cycle
are defined by the states to be achieved
for each alpha.

Assessing the effectiveness of methods.
Essence at its roots gives a detailed
definition of software engineering. In
the search for a GTSE (general theory
of software engineering),6 several re-
searchers use Essence as such a defi-
nition, and more is expected to come
out of this work. A key aspect provid-

Figure 3. Simple Essence-based activity map.

C
us

to
m

er
S

ol
ut

io
n

E
nd

ea
vo

ur

Explore
Possibilities

Ensure Stakeholder
Satisfaction

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Use the System

Operate
the System

Understand
Stakeholder Needs

Prepare to
do the Work

Coordinate
Activity

Support
the Team

Stop the
Work

Track
Progress

Understand the
Requirements

www.manaraa.com68 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

the design and sustainability of the
systems produced. This is not to say
the former isn’t important. Indeed, it
is crucial to the success of any devel-
opment organization. As the integra-
tion of software into the fabric of our
daily lives grows, however, the need
for proven, reusable engineering
practices grows as well.

Practices are needed that help
teams engineer their software: prac-
tices for working with requirements,
such as use cases, features, and sto-
ries; for developing components and
services; for applying an appropriate
pattern or framework; for testing com-
plex, distributed systems; that encour-
age reuse; and that help engineers
code with confidence. In particular,
practices are needed for dealing with
architectural concerns such as con-
currency, security, user experience,
microservices, and data protection, as
well as for addressing broader archi-
tectural concerns such as enterprise
architecture, product-line architec-
ture, service-oriented architecture,
and the architecture of systems. Many
of these practices already exist codi-
fied in the Essence language (see the
section “Sharing practice: Methods
and practice libraries”).

These engineering practices need
to be streamlined (lean), agile, and,
most importantly, composable into
complete methods to provide guide-
lines for teams working with a multi-
tude of practices for complex systems.
They are needed to help deal with the
complexities of modern software en-
gineering. They need to be available
to all engineers whether they are work-
ing alone, in small teams, or in larger
teams of teams, regardless of the style
of team working or work-management
practices adopted.

Globally, we want a robust and flex-
ible library of codified professional
engineering practices that reflect the
multidimensional nature of software
development and that can be used to
support the many different types of
software being developed today and in
the future.

These practices can only come from
engineering teams working on the cut-
ting edge of technology, and these teams
need a better way to capture, communi-
cate, and share their practices.

A new method architecture. With

ed by such a theory is the capability to
be predictive.

A construction engineer can use
material science and the theory of
structures to understand at an early
stage whether a proposed building is
likely to stand or fall. Similarly, using
Essence, one can understand whether
a proposed method is well construct-
ed, whether or not there are any gaps
or overlaps in its practices, and if
there are gaps or overlaps, how to re-
solve them.

The kernel has many mechanisms
for method analysis, the simplest of
which is provided by its high-level activ-
ity map. This is a set of 12 activity spaces
organized into three areas of concern.
An activity space is a generic placehold-
er for method-specific activities. These
activity spaces, as shown in Figure 3,
can be used to assess the spread of the
team’s activities. In this example, the
team has added notes to the map to in-
dicate their activities and red circular
markers to highlight the danger areas.

Note: Without understanding the
meaning of the Essence language, the
symbol of a pointed arrow to repre-
sent an activity space can make them

appear sequential, which is not the in-
tended meaning. The activity spaces
and the activities that they contain
can of course be applied iteratively,
concurrently, or in any order the prac-
tices require.

These are just a few simple exam-
ples of the kernel’s capabilities, but
they illustrate the many ways it can
help teams and organizations assess
the effectiveness of their methods.

Codifying and capturing engineer-
ing practices. In addition to the kernel,
Essence provides a language for creat-
ing practices on top of the kernel and
then composing methods from those
practices. This is extremely important
for moving from craft to engineering.

As discussed previously, most
current practices are embedded in
monolithic methods that aggres-
sively compete with one another.
Rather than admit that they share
practices and encourage reuse and
cross-pollination, they willfully slan-
der and steal from one another. Even
worse, from an engineering perspec-
tive, they are all concerned with the
design and sustainability of the de-
velopment organization rather than

The terms used in the method space are often ill-defined or confused. For example,
what is the difference between a method and a methodology? A practice and a process?

Composition: The process of merging practices into practices and methods. It is
important to understand that practices are separate concerns composed through a
merge operation and not components interacting through messages.

Essence kernel: An actionable reference model of software engineering that provides a
framework for the definition of practices and the assembly of methods.

Essentialization: The process of rendering a method or practice down to its essence and
capturing it using the Essence language.

Method: The documentation of a team’s way of working. A method may or may not be
documented using Essence. If it is documented in Essence, then it is the composition
of the Essence kernel and a set of practices to fulfill a specific purpose. A method could
belong to a single team or be shared among teams.

Methodology: A collection of practices known to share a common set of values and work
well together. It’s a form of practice library.

Practice: A repeatable approach to doing something with a specific objective in mind.

Practice library: A collection of potentially competing practices. For example, a
requirements management practice library could contain many different competing
practices such as declarative requirements, use cases, and user stories.

Starter pack: A partially built, often incomplete method that a team can use as a
framework to seed their own method.

Way of working: This is what a team actually does. It may or may not match their method.

Some Definitions

www.manaraa.comDECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 69

practice

the Essence kernel as common
ground, you can use the Essence lan-
guage to describe any practices, in-
cluding engineering practices, in a
way that allows them to be composed
seamlessly together to form methods.
Figure 4 illustrates a three-layer meth-
od architecture with the kernel as the
foundation, generic practices in the
middle, and domain-specific practic-
es at the top.

Starting from the bottom of the
stack, the three layers are:

The Essence kernel. This provides the
common ground for all practices and
methods and the underlying founda-
tion for the definition and composition
of the practices.

Generic practices. These are prac-
tices that are applicable across many
software engineering domains. Ex-
amples of generic practices include
Scrum, use cases, user stories, test-
driven development, and acceptance-
test-driven development. Many en-
gineering practices will be generic,
but many of the most valuable will be
domain-specific.

Domain-specific practices. These
practices are explicitly targeted to a
specific domain such as business in-
telligence, data warehousing, or tele-
communications. Domain-specific
practices are equally as important as
generic practices, if not more so. For
example, many domain-specific prac-
tices are needed to develop solutions
for the Internet of Things; these prac-
tices cater to things such as asset in-
tegration architecture and different
technology profiles. Just as generic
practices extend the kernel to provide
specific guidance, domain-specific
practices are often extensions/spe-
cializations of the generic practices.
For example, an asset integration ar-
chitecture practice could be present-
ed as an extension to a generic agile
architecture practice.

The separation of generic practices
from domain-specific practices helps
teams find the practices that they need
and helps organizations establish com-
mon ways of organizing and tracking
their work. It is not uncommon for an
organization to standardize on a small
set of generic practices as the founda-
tion for all of its teams’ methods.

Liberating practices in this way is
very powerful. Once practices are codi-

fied in Essence, teams can take owner-
ship of their ways of working and start
to assemble their own methods. This
can start with even a simple library of
practices, as shown in Figure 5.

This capturing and sharing of en-
gineering practices, both generic and
domain-specific, in a way that lets
them be applied alongside popular

management practices (agile or other-
wise), provides the codified knowledge
needed to support a true software en-
gineering discipline. It is also the key
to moving away from monolithic man-
agement methods and isolated engi-
neering practices.

Sharing practice: Methods and prac-
tice libraries. It’s easy to say that teams

Figure 4. The Essence method architecture.

domain-specific
practices

extensions to the generic
practices and additional

domain-specific practices

generic practices
standard practices to support

effective team working and
sound engineering principles

common ground
the basic concepts applicable

to all captured as a kernel The Essence
Kernel

Figure 5. Three teams sharing a simple practice library.

Use Case

The
Kernel

Architecture Iterative Test-Driven
Development

TDD

User
Story

Component

Shared Practice Library

Scrum Kanban

Use
Case

The
KernelArchitecture

Component

Team A

Use Case

Team B

Kanban The
Kernel

User
Story

Component

Team C

Scrum
The

Kernel
Test-Driven

Development

TDD

Iterative

www.manaraa.com70 COMMUNICATIONS OF THE ACM | DECEMBER 2016 | VOL. 59 | NO. 12

practice

of scaled agile methods, where each
method contains many of the same
practices tangled up with a few new,
unique, and innovative practices in
such a way that the safe separation of
the new practices for use with another
method is nearly impossible.

In contrast, Figure 6 outlines a
starter pack of agile practices based on
Essence, called Agile Essentials.2 It in-
cludes practices from Scrum, Kanban,
and XP (extreme programming).

This is a small library of seven prac-
tices, which, when composed together,
form a starting point for a team’s agile
method. Scrum, user stories, and use
cases have also been “essentialized”
and can be used alongside the Agile Es-
sential practices.

Thus, with Essence, a library of ge-
neric, reusable practices can be cre-
ated, from which a team can select
the ones they want to use and they can
compose together to kick-start their
own method.

The Ignite Internet of Things method-
ology. Ignite is a methodology devel-
oped for the Internet of Things.8 It sup-
ports a number of different approaches
and attempts to bridge the gaps be-
tween “machine guys” and “Internet
guys,” and between “five-year think-
ing” and “continuous beta.” Ignite can
easily be described as a set of practices
on top of the Essence kernel. Figure 7
demonstrates what Ignite looks like
when presented using Essence.

This picture readily illustrates a
number of key points:

˲˲ Ignite clearly contains and reuses
a number of generic practices that
are applicable in many more domains
than the Internet of Things, including
those already available as part of the
Agile Essentials practice library.

˲˲ Successful development for the
Internet of Things requires many do-
main-specific engineering practices.

˲˲ Whenever anyone wants to cre-
ate a new method, they currently have
to rewrite, re-present, and, in many
cases, rebrand already established ge-
neric practices.

˲˲ The more comprehensive the ap-
proach, the less likely it is that anyone
will use all of it. For example, no one is
ever going to use all of these practices
at the same time. Clearly, there are
many methods that could be built from
the practices contained within the Ig-

will be able to plug and play with sets
of practices to build their own meth-
ods and take ownership of their way of
working. But where are the practices
going to come from?

Let’s take a look at two concrete ex-
amples.

Agile methods. The industry has

seen an explosion in the number of ge-
neric agile practices being published
and promoted. Unfortunately, most of
these “belong” to one method or an-
other and, even though they share the
same values, are rarely presented in a
way that lets them play well together.
This is particularly true in the area

Figure 6. Agile essentials with its seven practices.

Agile
Teaming

Essentials

Product
Backlog

Essentials

Product
Ownership
Essentials

Agile
Retrospective

Essentials

Daily
Stand-Up

Essentials

Agile
Development

Essentials

Agile
Timeboxing
Essentials

Figure 7. Ignite expressed as a set of Essence practices.

VisionScrum
User
Story

IoT
Technical

Design

IoT
Functional

Design

M
et

ho
d

Io
T

-s
pe

ci
fic

P
ra

ct
ic

es
G

en
er

ic
 P

ra
ct

ic
es

K
er

ne
l

IoT solution
delivery method

IoT
Project

Initiation

Use
Case
2.0

Periodic
Alignment

Shared
Backlog

Product
Manage-

ment

Archi-
tecture

Agile
Archi-
tecture

Release
Manage-

ment

Product
Backlog

Product
Owner-

ship

Agile
Time-
boxing

Agile
Develop-

ment

Kernel

www.manaraa.comDECEMBER 2016 | VOL. 59 | NO. 12 | COMMUNICATIONS OF THE ACM 71

practice

nite methodology, but without the use
of Essence this will be very difficult, if
not impossible, for teams to do.

Many other practices could be use-
ful for teams developing for the In-
ternet of Things. Some of these will
be innovations unknown at the time
of writing this article or the creation
of Ignite. This can easily lead to the
approach becoming out of date and
unfashionable. The presentation of
Ignite as a practice library allows the
practice set to respond to the needs of
the users, who may regularly add new
practices and retire those that are no
longer needed.

The process of extracting the prac-
tices from an existing method or meth-
odology is called essentialization. Es-
sence is designed to allow people to
extract the essence of any method or
practice, so essentialization of a meth-
od means identifying the method’s
practices and practice architecture.
Moreover, each practice is described/
codified in terms of the elements in Es-
sence and the Essence language with
new practice-specific elements added
as needed. As of this writing, the Uni-
fied Process has been essentialized,
and DSDM (dynamic systems develop-
ment method) is in process. Several
other methods are in the planning
stages to become essentialized. Many
companies around the world are now
using the Essence standard to essen-
tialize their methods.

The value of essentialization is that
people can easily learn what really
matters about a practice, compare it
with other practices, compose it into
a method (with many other proven
practices), and easily modify/change
the method as new knowledge be-
comes available. Applying Essence
also makes it easier to govern the
methods you have in your organi-
zation, so you create an effective
learning organization. Moreover,
an essentialized method is not just
a static description, but helps the
team while they actually use the
method, allowing them to measure
progress and health at any moment
during their endeavor.

Less work has been done to capture
the domain-specific practices needed
to bridge the gap between craft and
engineering. As discussed earlier, the
concepts can be illustrated using Ig-

nite8 and other popular methodolo-
gies, but a vibrant and committed en-
gineering community must flesh out
and complete the necessary set of en-
gineering practices.

There are two ways to accelerate the
transition:

˲˲ Slice the popular methods into
practices and design these practices so
that they can be composed in any rea-
sonable way teams want, maybe result-
ing in a method with practices from
several existing methods such as DAD,
SAFe, LESS, and SPS.

˲˲ Codify existing or new practices so
that they can be composed with other
practices to form complete methods.
There are already hundreds of prac-
tices in the world, but they are not
described in a way that allows them
to be easily composed. Now this can
be done without having to describe a
complete method.

In both cases Essence is key as it
provides the foundation for this work
and for the industry to transition suc-
cessfully from craft to engineering.

Conclusion
As software becomes more essential
to the world’s day-to-day activities, it is
time for software development to move
beyond a craft-based approach to be-
come a true engineering discipline.

This will require a shared base of
codified engineering practices that can
be reused across various technical do-
mains and various types of software;
this set of practices will grow and adapt
as better ways of developing software
come along.

This is not going to happen over-
night, but it is a challenge to which our
industry needs to rise as it matures and
evolves into something beyond agile
and other current practices.

We still need the dedication, inno-
vation, and invention of craft, embod-
ied in:

˲˲ Skilled professionals, passionate
about their subjects and committed to
mastering new, complex, fast-moving
technologies.

˲˲ Local experts who understand
complex problems in depth and re-
spond rapidly to changing needs, per-
ceptions, and challenges.

However, we also need the codified
knowledge and professionalism of an
engineering discipline to be able to:

˲˲ Sustain and grow delivery capabil-
ity through changes in technologies,
teams, and suppliers.

˲˲ Predictably scale operations from
early prototypes to global rollouts.

˲˲ Take control of investments and
know when to pivot to solutions more
likely to deliver favorable returns.

˲˲ Systematically grow the levels of
reuse and interoperability of solution
components and systems.

˲˲ Produce long-lived solutions with
affordable costs of ownership.

This is what we mean by moving
from craft to engineering—a journey
that must be made practice by prac-
tice, domain by domain. Thanks to Es-
sence, that journey can start today for
all of us. 	

References
1.	 Graziotin, D., Abrahamsson, P. A Web-based modeling

tool for the SEMAT Essence theory of software
engineering. J. Open Research Software 1, 1 (2013),
e4; http://dx.doi.org/10.5334/jors.ad.

2.	 Ivar Jacobson International. Agile Essentials, 2015;
https://www.ivarjacobson.com/sites/default/files/
field_iji_file/article/agile_essentials_paper.pdf.

3.	 Jacobson, I., Seidewitz, E. A new software
engineering. acmqueue 12, 10 (2014); http://queue.
acm.org/detail.cfm?id=2693160.

4.	 McDonough, A. Munich Re and ESSENCE—Kernel and
Language for Software Engineering Methods: A Case
Study. Object Management Group, 2014; http://www.
omg.org/news/whitepapers/Munich_Re_Essence_
Case_Study-2014-12-01_JP.pdf.

5.	 Object Management Group. Essence—Kernel and
language for software engineering methods (Essence),
2014; http://www.omg.org/spec/Essence/.

6.	 Ralph, P., Johnson, P., Jordan, H. Report on the first
SEMAT workshop on general theory of software
engineering. ACM SIGSOFT Software Engineering
Notes 38, 2 (2012): 26-28.

7.	 Shaw, M. Prospects for an engineering discipline of
software. IEEE Software 7, 6 (1990), 15–24.

8.	 Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.
Enterprise Internet of Things: Strategies and Best
Practices for Connected Products and Services.
O’Reilly, 2015.

9.	 Stimson, R. Industrial scale agile—challenges and
solution strategies. Ivar Jacobson International,
2015; https://www.ivarjacobson.com/publications/
white-papers/industrial-scale-agile-challenges-and-
solution-strategies.

Ivar Jacobson is a father of components and component
architecture, modern business engineering, the Unified
Modeling Language, and the Rational Unified Process.
His latest contribution is a formal practice concept that
promotes practices as the “first-class citizens” of software
development. Jacobson is also one of the founders of
the SEMAT (Software Engineering Method and Theory)
community.

Ian Spence is CTO at Ivar Jacobson International and
the team leader for the development of the SEMAT kernel.
An experienced coach, he has introduced hundreds of
projects to iterative and agile practices.

Ed Seidewitz is the former CTO, Americas, for Ivar
Jacobson International and is currently chair of the
ongoing Essence Revision Task Force. With Ivar Jacobson
International, he has led agile system architecture and
development engagements in both the commercial
and government sectors and participated in practice
development.

Copyright held by owners/authors.
Publication rights licensed to ACM. $15.00

https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/agile_essentials_paper.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/agile_essentials_paper.pdf
http://queue.acm.org/detail.cfm?id=2693160
http://queue.acm.org/detail.cfm?id=2693160
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
http://www.omg.org/news/whitepapers/Munich_Re_Essence_Case_Study-2014-12-01_JP.pdf
https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies
https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies
https://www.ivarjacobson.com/publications/white-papers/industrial-scale-agile-challenges-and-solution-strategies

www.manaraa.com

Copyright of Communications of the ACM is the property of Association for Computing
Machinery and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

